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Abstract—The proportion of elderly people in society is pre-
dicted to continue to rise in the coming decades. Mobility is a key
aspect of many daily activities, but falls become an increasingly
significant health risk with age. With the COVID-19 pandemic,
many elderly users prefer or require assistive devices, rather
than human support, in walking and carrying out daily tasks.
However, prior work has shown that when using passive assistive
mobility devices, fall risks can actually increase. This presents an
opportunity for assistive robots to help maintain and improve the
mobility of elderly users, with an additional emphasis on safety,
made possible through sensing capabilities. In this paper, we
present a computer vision system that detects the eye blink and
face angle patterns for exhibiting signs of tiredness. In addition
to the frame-based detection, we also introduce a time-window
collation with a machine learning classifier. The system proposed
here is critical in monitoring the user, performing real-time
detection, and recommending they take a break if tiredness is
detected. The overall system architecture and algorithmic details
are presented, then a series of experiments are conducted to
validate the performance of the approach.

Index Terms—Human-robot interaction, assistive robotics, mo-
bility aids, pandemic solution, computer vision

I. INTRODUCTION

Throughout the coming decades, the proportion of elderly
people in society is predicted to continue to rise [1]. This
has the potential to cause societal issues, with the World
Health Organization suggesting that one solution could be
to help people maintain their capabilities as they age [2].
A key aspect of carrying out daily tasks is mobility. How-
ever, falls become an increasingly significant health risk with
age [3]. Furthermore, with the COVID-19 pandemic, there
are concerns over receiving human support, and preference or
requirement to instead use assistive devices. It has been shown
that using passive assistive mobility devices can actually lead
to an increased fall risk [4]. This is therefore an opportunity
for assistive robots, which can be equipped with sensors and
software, enhancing safety features.

In this paper, we propose a system that uses a visual sensor
(an RGB camera) to monitor the tiredness of a user while
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they are using a robotic mobility aid. Existing approaches in
the field have primarily focused on monitoring the user gait in
order to detect when they might be falling, e.g., [5]. With our
approach, the goal is to instead monitor the user for signs of
tiredness or fatigue, to suggest that they rest before they are
so tired that they fall.

The work presented here takes inspiration from driver
drowsiness detection and proposes a solution that is validated
against the data from this domain. This paper contributes a
novel system for detecting tiredness for a robotic mobility aid
by taking advantage of the binary features of eye state and
face angle. A series of machine learning classifiers are tested
for the strongest approach. The overall goal of the work is to
enhance the robustness of an algorithm for tiredness detection.
While the results are promising, we also highlight the need for
further exploration and data collection for this application.

II. RELATED WORK

Various existing works have explored aspects of safety
when using passive and robotic assistive mobility aids. For
instance, [6] explores the height and width of the frame of a
walker device to determine how this impacts balance, so that
appropriate mechanical designs can be made. It has also been
established that forearm support can be important for improved
balance when using such devices [7].

When considering devices with increased sensing capabili-
ties, a common research goal is to measure the gait state of the
user. This can help with control of the device, with the user gait
being used as an input for motor control algorithms [5]. These
approaches tend to be somewhat reactive though, waiting for
the gait state to begin falling, or for the user to have already
released the device from their grip. In this paper we propose
another solution that could augment these existing approaches
to improve the safety of the user: a system that monitors the
user for signs of tiredness and recommends a break before
the problem becomes critical. This idea has overlaps with the
concept of drowsy driving detection, studied with automo-
bile users. Drowsiness has some distinctions from tiredness,



Fig. 1. Example use case for the algorithm presented in this paper. A user
walks with an assistive mobility robot. A camera is mounted on the robot that
is intended to capture the head of the user.

wherein a drowsy person may be physically capable, but not
alert, whereas tiredness or fatigue includes physical tiredness.
While we are primarily interested in the latter, there are clear
overlaps in the concepts and possible detection methods which
make drowsy detection algorithms of relevance.

Many drowsy driving detection algorithms rely on studying
eye blinks as input features, then use the count of blinks over
a minute to determine likely tiredness [8]–[10]. Machine
learning has also been applied to drowsy driving detection
through the use of classifiers processing action units (AU) from
the facial action coding system (FACS) as feature inputs [11].
Given these prior works, it is clear that eye blinks and head
position are important in the detection of drowsy behaviors,
and have been used with promising results in driving scenarios.

III. METHODOLOGY

The use case for the system is that of a single user,
controlling a robotic mobility device. The intended device is
similar to a rollator or walker, as shown in the example in
Fig. 1. The mobility device might vary in its specific design,
but our system is based on having a frame that the user
interacts with using the upper body. A camera can then be
attached to this frame and focused on the user’s face.

The Tiredness Detection Algorithm (TDA) takes an RGB
image stream directly from a USB camera. The output of the
TDA is a prediction of whether the user within the image(s)
is showing signs of being tired or not. Given the use case
targeting a mobility aid robot which assists one person at a
time, an assumption is made that the largest face in the image
will be regarded as the user and the TDA only processes this
face. The approach takes inspiration from drowsy driving prior
work [8], [10], [11] which finds that eye and head behavior
are key indicators for tiredness detection.

Fig. 2 shows the detailed flow for the TDA. With the RGB
image stream as an input, a face detection module is first
used to determine whether the flow should continue. Only
when a face is present will the algorithm be applied. Within
the selected face region, an eyes-closed and a facing-down
calculation are performed in parallel.

Fig. 2. Tiredness Detection Process

For the eyes-closed calculation, six landmark points are
detected for each eye (Fig. 3A, B). The landmarks are detected
using the dlib implementation of a 68-point facial landmark
detection model [12], [13]. For each eye detected, an eye-
height (Dh) is calculated based on the average distance
between points 1 and 5, and points 2 and 4 ((Dp1,5

+Dp2,4
)/2).

An eye-width (Dw) is calculated from the distance between
points 0 and 3 (Dp0,3 ). The ratio between Dh and Dw indicates
the eyes-closed ratio (Rec), like the Eye-Apect Ration in [9].
When both eyes are detected, the eyes-closed ratio is the
average value of both Rec, like the Eye-Aspect Ratio in [9].

For calculating whether the person is facing down, six
face landmarks are used (Fig. 3C, D). Similar to the eye
detection, the landmarks are acquired from dlib with the
same landmark detection model. After this, a projection from
pixel-wise landmarks to a 3-D reconstruction is done through
OpenCV [14]. Specifically, the pitch angle is used to represent
Afd, where facing downwards is negative.
Rec and Afd are both frame-based calculation results.

However, the TDA is a real-time detection algorithm with an
expected incoming frame rate between 15 and 30 frames per
second (FPS). Thus, a time-window can be used to reduce
the influence of noise and to measure behavior over time.
For instance, a single frame may show the eye being closed,
but this is not necessarily an indicator of tiredness. Better
indicators include the eye being closed multiple times in a
short time-frame, the eyes being shut for the entire period,
or slow opening and closing eye speed, all of which often
indicate tiredness [8], but can only be observed over time.

Prior literature was used to determine an appropriate time
window. Eye closure speed is a strong predictor of fatigue,
with alert drivers closing their eyes in less than 0.5 seconds
[15]. The time window should be longer to capture multiple
instances of this phenomenon and account for the difference in
age (and likely movement speed) between those from drowsy
driving studies and the intended user for the mobility aid.
Consequently, the time window is selected to be 3 seconds
long. With the eye-closed and face-down features calculated
for each frame, a classifier can be trained over the time window
to produce a prediction about the overall tiredness state.



Fig. 3. (A-B) Landmark representation for each open eye and closed eye.
(C-D) Landmark representation for not facing down and facing down.

IV. EXPERIMENTS

A. Datasets

For validating the approach, the first step is to verify that
the face detection and landmark detection can be used in
conjunction with the devised algorithms to provide accurate
predictions for the eye open/closed state and the face down/not
state. Only one dataset was found that had explicit labels for
the eye being open or closed that also shows the full face: the
Closed Eyes in the Wild (CEW) dataset [16]. This dataset has
2423 images in total, with 1192 closed eye images and 1231
open eye images. Almost all images are of different people.

For the face angle, the BIWI dataset was selected as
this contains a large number of images and annotations for
calculating the head angle [17]. From the head angle, the
ground truth label of whether the head is facing down can
be calculated through OpenCV reconstruction [14] using the
same head angle threshold as for prediction.

After validation of the component parts, the overall tiredness
prediction algorithm can be tested. For this full evaluation, The
University of Texas at Arlington Real-Life Drowsiness Dataset
(UTA-RLDD) was selected as it contains a large volume of
data, with natural (not acted) displays of drowsiness [10].
Currently, no dataset exists that serves the exact use-case of
the work presented here: elderly people using mobility devices
with varying tiredness levels. This dataset was determined to
be the closest publicly available alternative. However, UTA-
RLDD contains multiple drowsiness levels, which do not
all fit the use case investigated in this work. Furthermore,
the drowsiness levels of the dataset are self-reported, only
achieving 57.8% accuracy from observers watching the videos.
To address these issues, a subset of the videos were used for
the analysis here. Only the first fold of the data was used as
this had the highest human judgment accuracy [10]. The videos
were then annotated for segments that were considered to be
extremely drowsy. A second-coder verified these annotations;
any segments with disagreement were rejected. The resulting
data consists of videos from 11 individuals, ranging from 4
seconds to 62 seconds in length, for a total of about 14 minutes
(25369 frames). This same time length was extracted randomly

TABLE I
(A). VALIDATION OF TDA FEATURES. (B). PERFORMANCE METRICS FOR

CLASSIFIERS AT PREDICTING TIREDNESS.
TOTAL FRAMES (total), TRUE POSITIVE (TP), FALSE NEGATIVE (FN),

FALSE POSITIVE (FP), RECALL (Re), PRECISION (Pr) AND F1 SCORE (F1)
STATISTICS. SUPPORT VECTOR MACHINE (SVM), MULTI-LAYER

PERCEPTRON (MLP), RANDOM FOREST (RF) CLASSIFIERS.

(A) Total TP FN FP Re Pr F1
Teye 2423 913 90 211 0.91 0.81 0.86
Tface 3656 484 62 280 0.89 0.63 0.74

(B) Total TP FN FP Re Pr F1
SVM 92 36 12 1 0.75 0.97 0.85
MLP 92 35 13 1 0.73 0.97 0.83
RF 92 34 14 1 0.71 0.97 0.82

from the ‘alert’ videos, resulting in 24492 frames, to create
an approximately balanced set of drowsy vs. alert data.

B. Feature Algorithm Validation

With the entire workflow (Fig. 2) implemented on the
assistive robot using an NVIDIA Jetson NX board, TDA is
able to perform real-time detection. Specifically, TDA uses
11.67% of the CPU computing power with a detection rate of
27 FPS. Thus, it is a light algorithm that is able to quickly
respond when the user shows evidence of tiredness while
using the assistive robot. The performance of TDA is first
validated using frame-wise tiredness detection results Teye

and Tface. Fig. 3 show representative results for eye and face
landmark detection, respectively, with the results summarized
in Table I(A). The goal is to establish the accuracy of the
algorithms that are being used to generate the features for the
later classification stage.

The results for the eye open/close validation, Teye, are
calculated based on the CEW dataset. No face is detected in
234 (9%) of the frames. For the remaining frames, the recall
and precision are satisfactory, confirming that the eye state can
be predicted somewhat reliably using the proposed algorithm.

Facing down detection Tface has been validated based on
a total of 3656 frames (766 facing down and 2890 not). No
face was detected in 845 (23%) frames. In the validation test
dataset, facing down data accounts for 21% of the data. An
ideal dataset for validation would consist of images explicitly
and accurately labeled with ‘facing down’ or not, but no
publicly available dataset was found matching this criteria.
Nevertheless, the F1 score of 0.74 indicates that there is
a strong agreement between these two algorithms, which
provides validation for using this implementation.

C. Tiredness Detection Results

With validation of the component features, we now explore
the application of these features to the tiredness detection
classification. As described previously, no ideal dataset was
found so this section considers a manually crafted subset of the
UTA-RLDD. First, the Teye and Tface features were extracted
for each frame of the dataset. Then, a non-overlapping 3
second time-window was applied. Note that in the real-time



implementation, a sliding window is used instead. This results
in a total of 221 videos in the drowsy class and 235 videos in
the alert class.

Given the relatively small amount of data, a number of
simple classifiers were considered: Multi-Layer Perceptron
[18], Support Vector Machine (SVM) [19] and Random Forest
[20]. Each algorithm was implemented with grid search to
find optimal hyper-parameters. A random training/test split of
80/20 was applied. Table I(B) shows the performance of the
different classifiers. While all classifiers have similar perfor-
mance, the SVM has the best performance overall, achieving
an F1 score of 0.85 and an accuracy of 86%. This compares
favorably to the accuracy that would be achieved with a
majority class baseline of 52%. The final hyper-parameters
for the SVM were as follows: Gaussian radial basis function
(RBF) kernel, γ = 0.001, C = 100.

The raw data (i.e., before thresholds were applied to deter-
mine a binary eye open/closed or face down/not state) from the
Teye and Tface calculations were also tested. The performance
using these raw values was lower in all cases, both with and
without scaling applied. This provides support for the utility
of the Teye and Tface algorithms as designed in Sec. III.

V. DISCUSSION

The results from the previous section provide validation
for the proposed eye-closed and facing-down algorithms and
indicate that satisfactory performance can be achieved on the
overall classification of tired behavior. However, there are
several limitations of the work here that must be addressed to
further advance the possibility of using such an algorithm in
a real-world, safety critical environment. Firstly, the data used
for the experiments contain mostly younger participants. While
this provides a starting point for performing experiments and
developing an algorithmic approach, there are open questions
surrounding how well the findings would transfer to the
behavior and facial features of the elderly.

A key next step for this research is to collect data of the
elderly population using assistive mobility devices and test
the approach to see whether it remains robust. This is not
an easy task given the challenge in collecting high-quality
data. Designing a data collection to intentionally cause fatigue
would also have many possible risks.

The system introduced here focused on computer vision
based detection. In real-life applications, more system infor-
mation can be collected through sensor fusion, e.g., devices
such as IMUs could be used to detect user activity. During
known tasks, and with repeated use from the same user,
expectations about walking speed and other motions could be
established. These factors could then be incorporated into the
classifier that is proposed in this paper to help improve the
performance.

In this paper, we take inspiration from drowsy driving de-
tection to propose and test an algorithm for tiredness detection
for a mobility aid robot. It is found that the proposed algorithm
achieves satisfactory performance and enhances the robustness
of the predictions made from the raw features. However,

further testing is needed with the targeted elderly population
before real-world use. We discuss the challenges in collecting
appropriate data for this purpose but highlight the promise
that has been shown in applying computer vision and machine
learning algorithms to this application, which would have a
positive impact on people’s lives.
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