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ABSTRACT
An increasing number of human-robot interaction (HRI) stu-
dies are now taking place in applied settings with children.
These interactions often hinge on verbal interaction to effecti-
vely achieve their goals. Great advances have been made in
adult speech recognition and it is often assumed that these
advances will carry over to the HRI domain and to interacti-
ons with children. In this paper, we evaluate a number of
automatic speech recognition (ASR) engines under a variety
of conditions, inspired by real-world social HRI conditions.
Using the data collected we demonstrate that there is still
much work to be done in ASR for child speech, with interacti-
ons relying solely on this modality still out of reach. However,
we also make recommendations for child-robot interaction
design in order to maximise the capability that does currently
exist.
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Verbal Interaction; Interaction Design Recommendations

1. INTRODUCTION
Child-robot interaction is moving out of lab and into ‘the

wild’, contributing to domains such as health-care [2], educa-
tion [15,25], and entertainment [20]. An increasing amount
is being understood about how to design interactions from a
nonverbal behaviour perspective [13,14], but many of these
domains hinge on effective verbal communication. This in-
cludes not only appropriate speech production by robots, but
transcribing and understanding speech from young users as
well. A prerequisite to this interpretation of speech is having
a sufficiently accurate transcription of what is being said.
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For this reason, high-quality Automatic Speech Recogni-
tion (ASR) is a vital component for producing autonomous
human-robot interaction. ASR engines have undergone sig-
nificant improvements in recent years, particularly following
the introduction of new techniques such as deep learning [26].
However, these engines are commonly evaluated against stan-
dardised datasets of adult speech [23]. One might naively
assume that these improvements will also translate to child
speech, and will cope relatively well with noisy (i.e., real-
world) environments, such as those experienced in applied
HRI. However, this is often observed to not be the case,
cf. [19].

In this paper we seek to evaluate the state-of-the-art in
speech recognition for child speech, and to test ASR engines
in settings inspired by real-world child-robot interactions. We
record a variety of pre-determined phrases and spontaneous
speech from a number of children speaking English using
multiple microphones. We separate recordings by whether
they are comparatively clean, or contain noise from the real-
world environment. Through consideration of the results, we
highlight the limitations of ASR for child speech, and also
make a number of interaction design recommendations to
maximise the efficacy of the technology currently available.

2. BACKGROUND
Speech recognition has undergone significant advances,

building on or moving on from the use of Hidden Markov
Models (HMM) towards using deep neural networks (DNN).
DNNs have been shown to outperform older HMM based
approaches by some margin against standard benchmarks [12].
For example, in a Google speech recognition task a deep
neural network reduced the Word Error Rate (WER) to
12.3%, a 23% relative improvement on the previous state-of-
the-art [12].

However, these benchmarks are based on adult speech cor-
pora, such as the TIMIT corpus [17]. It has been noted by
other researchers that there is a lack of corpora for children’s
speech, leading to a lack of training data and a lack of bench-
marking for children’s speech recognition models [5, 9, 11]. It
is commonly assumed that the recent improvements observed
in adult speech recognition mean that child speech recogni-
tion improved at the same pace, and recognising children’s
utterances can be achieved with a similar degree of success.
However, anecdotal evidence suggests that this is not the
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case; Lehman et al. [19] state that recognition of children’s
speech “remains an unsolved problem”, calling for research
to be undertaken to understand more about the limitations
of ASR for children to ease interaction design.

Children’s speech is fundamentally different from adult
speech: the most marked difference being the higher pitched
voice, due to children having a shorter, immature vocal
tract. In addition, spontaneous child speech is marked by
a higher number of disfluencies and, especially in younger
children, language utterances are often ungrammatical (e.g.,
“The boy putted the frog in the box”). As such, typical
ASR engines, which are trained on adult speech, struggle
to correctly recognise children’s speech [8, 24]. An added
complexity is caused by the ongoing development of the vocal
apparatus and language performance in children: an ASR
engine trained for one age group is unlikely to perform well
for another age group.

There have been various attempts to remedy this, from
adapting adult-trained ASR engines to the spectral characte-
ristics of children’s speech [18,22], to training ASR engines
on child speech corpora [6, 8, 10], or combinations of both.
For example, Liao et al. [21] have used spoken search in-
structions from YouTube Kids to train DNNs with some
success, resulting in a WER between 10 and 20%. In [24]
vocal-tract length normalisation (VTLN) and DNN are used
in combination, and when trained on read speech of children
aged between 7 and 13 years, result in a WER of approxima-
tely 10%. It should be noted that these results are achieved
in limited domains, such as spoken search instructions, read
speech, or number recognition [22]. Also, the circumstances
in which the speech is recorded are typically more controlled
than interactions encountered in HRI, where ambient noise,
distance and orientation to the microphone, and language
use are more variable.

Whilst children’s speech recognition in general is a chal-
lenge, HRI brings further complexities due to factors such
as robot motor noise, robot fan noise, placement and orien-
tation of microphones, and so on. Many researchers adopt
interaction approaches that do not rely on verbal interaction
due to the unreliability of child ASR, particularly in ‘wild’
environments. Wizard of Oz (WoZ) approaches have proven
popular to substitute for sub-optimal speech recognition and
natural language interaction, but when autonomy is impor-
tant, WoZ is impractical and the use of mediating interfaces
to substitute for linguistic interaction has proven successful.
Touchscreens, for example, can serve as interaction devices,
they provide a focus for the interaction while constraining
the unfolding interaction [1]. However, if we wish the field to
continue to progress into real-world environments, then it is
unrealistic to exclude verbal interaction due to the prevalence
of this communication channel in natural interaction.

3. RESEARCH QUESTIONS
The previous section highlights that the current perfor-

mance of ASR for child speech remains unclear. We wish to
address this by exploring different variables in the context of
child speech, such as the type of microphone, the physical lo-
cation of the speaker relative to a robot, and the ASR engine.
These variables motivate a set of research questions presented
below, all in the context of child speech. Their evaluation will
be conducted with the aim of producing evidenced guidelines
for designing verbal human-robot interactions with children.

Figure 1: Equipment layout for recording children in
a school. The Aldebaran NAO is turned on (but not
moving) and records to a USB memory card. The
studio microphone and portable microphone record
simultaneously.

Q1 Do external microphones produce better results than
robot-mounted microphones?

Q2 How can physical interaction setups be optimised for
ASR?

Q3 Is there a benefit to using cloud-based or off-board ASR
engines compared to a stock robot ASR engine?

Q4 What is the impact of ‘real-world’ noise on speech
recognition in an HRI inspired scenario?

4. METHODOLOGY
In order to address the research questions posed in the

previous section, a data collection and testing procedure was
designed. At the time of writing, no corpus of child speech
suitable for the intended analysis was publicly available. As
such, there is a need for the collection of this data; the
procedure for this will be outlined here.

4.1 Participants
A total of 11 children took part in our study, with an

average age M =4.9, SD=0.3; 5F/6M. The age group is
motivated by the many large-scale initiatives in the US,
Europe and Japan exploring linguistic interactions in HRI
[2,3,19,20,25], and the fact that this age group is preliterate,
so cannot interact using text interfaces. All children had
age-appropriate competency in speaking English at school.
All participants gave consent to take part in the study, with
the children’s parents providing additional consent for par-
ticipation, and recording and using the audio data. The
children were rewarded after the study with a presentation
of social robots.

4.2 Data Collection
In order to collect a variety of speech utterances, three

different categories were devised: single word utterances,
multi-word utterances, and spontaneous speech. The single



word and multi-word utterances were collected by repeating
after an experimenter. This was done to prevent any issues
with child reading ability. Spontaneous speech was collected
through retelling a picture book, ‘Frog, Where Are You?’ by
Mercer Mayer, which is a common stimulus for this activity in
language development studies [4]. The single word utterances
were numbers from 1 to 10, and the multi-word utterances
were based on spatial relationships between two nouns, for
example, ‘the horse is in the stable’. Five sentences of this
style were used; the full set can be downloaded from [16].

The English speech from children was collected at a pri-
mary school in the U.K. This served two purposes: firstly,
to conduct the collection in an environment in which the
children are comfortable, and secondly, to collect data with
background noise from a real-world environment commonly
used in HRI studies, e.g., [15]. An Aldebaran NAO (har-
dware version 5.0 running the NaoQi 2.1.4 software) was
used as the robotic platform. This was selected as it is a
commonly used platform for research with children, as well
as for its microphone array and commercial-standard speech
recognition engine (provided by Nuance). The robot would
record directly from the microphones to a USB memory stick.
Simultaneously, a studio grade microphone (Rode NT1-A)
and a portable microphone (Zoom H1) were also recording.
The studio microphone was placed above the robot and the
portable microphone just in front of the robot (Fig. 1).

4.3 Data Processing

Encoding and Segmentation.
All audio files were recorded in lossless WAV format (mini-

mum sampling rate of 44kHz). The audio files from each of
the three microphones were synchronised in a single Audacity
project. The audio files were then split to extract segments
containing the speech under consideration. These segments
were exported as lossless WAV files, resulting in 15 files per
microphone (45 in total) per child. The spontaneous speech
was transcribed and split into sentences. This produced a
total of 222 spontaneous speech utterances of various lengths
(M = 7.8 words per utterance, SD = 2.6). The full dataset
(audio files and transcripts) is available online at [16].

Noisy vs. Clean Audio Recordings.
As the recordings of children in English were collected du-

ring the course of a school day, there is a range of background
noise. To study the impact of noise on ASR performance, it
is desirable to separate the recordings into those that have
minimal background noise (‘clean’ recordings) and those that
have marked background noise (‘noisy’ recordings). Some
noise is unavoidable, or would be present in any HRI scena-
rio, such as robot fan noise, so these were considered ‘clean’.
Other noise, such as birds outside, other children shouting
from the adjacent room, doors closing, or coughing would
be considered ‘noisy’. This means that the clean recordings
are not noise-free like those from a studio environment, but
are a realistic representation of a minimal practical noise
level in a ‘wild’ HRI scenario, thereby allowing us to evaluate
recognition accuracy with greater veracity.

To appropriately categorise the recordings as clean or noisy,
each one was independently listened to by 3 human coders
with the guidance from above as to what is considered clean
vs. noisy. Overall agreement levels between coders was
good, with Fleiss κ = .74 (95% CI [.65,.84]) for the fixed
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Figure 2: Locations at which speech it played to the
NAO to explore how the physical layout of interacti-
ons may influence speech recognition rates.

utterances and κ = .68 (95% CI [.60,.75]) for the spontaneous
utterances. A recording was categorised as noisy or clean if
all 3 coders agreed it was respectively noisy or clean. Where
there was any disagreement between coders, the recordings
were omitted from analysis of noise impact (59 fixed and 54
spontaneous utterances were excluded). This resulted in 80
noisy recordings, and 37 clean recordings being analysed from
the fixed utterances set and 83 clean/85 noisy recordings from
the spontaneous utterances set. For some children, the NAO
recording failed due to technical difficulties. Therefore, when
comparing across microphones, the fixed utterance selection
is reduced to 29 clean recordings and 60 noisy recordings.

Manipulation of the Sound Location.
To evaluate the impact of distance and angle on speech

recognition, it was necessary to vary the distance between
the robot and child, while at the same time keeping the
speech utterances constant. As children struggle to exactly
reproduce speech acts and over 500 utterances are needed to
be recognised, we used pre-recorded speech played through
an audio reference speaker (the PreSonus Eris E5) placed at
different locations around the robot. In order to match the
original volume levels, a calibration process was used where
a recording would be played and re-recorded at the original
distance between the child and the robot. The audio signal
amplitudes between the original and recorded file were then
compared. The speaker volume was iteratively revised until
the amplitudes matched. This volume was then maintained
as the speaker was moved to different distances and angles
from the robot, while always facing the robot (to address, at
least in part, Q2 from Sec. 3); see Fig. 2 for a diagram of
these positions.

4.4 Measures
For recognition cases where a multiple choice grammar

is used (i.e., the list of possible utterances is entirely pre-
defined, and the recognition engine’s task is to pick the correct
one), the recognition percentage is used as the metric. Each
word or sentence correctly recognised adds 1; the final sum
is divided by the number of tested words or sentences. All
Confidence Intervals calculated for the recognition percentage
include continuity correction using the Wilson procedure. We



use the same metric when using template-based grammars
(Sec. 5.2.1).

For the cases in which an open grammar is used, we use
the Levenshtein distance as a metric at the letter level. This
decision was made as it reduces punishment for small errors
in recognition, which would typically not be of concern for
HRI scenarios. For example, when using the Levenshtein
distance at the word level (as with Word Error Rate), if the
word ‘robots’ is returned for an input utterance of ‘robot’,
this would be scored as completely unrecognised. At the
letter level, this would score a Levenshtein distance of 1,
as only a single letter needs to be inserted, deleted or sub-
stituted (in this example, the letter ‘s’) to get the correct
result. To compare between utterances, normalisation by
the number of letters in the utterance is then required to
compensate for longer inputs incurring greater possibility of
higher Levenshtein distances.

5. RESULTS
This section will break down the results and analysis such

that the research questions are addressed. The results are
split into two main subsections concerning: 1) technical
implementation details, and 2) general ASR performance.
The intention is to then provide a practical guide for getting
the best performance from ASR in HRI scenarios, as well as
an indication of the performance level that can be expected
more generally for child speech under different circumstances.

5.1 Technical Best Practices
Throughout this subsection, the ASR engine will remain

constant so that other variables can be explored. In this
case, the ASR engine used is the one that comes as default
on the Aldebaran NAO, provided by Nuance (VoCon 4.7).
A grammar is provided to this engine, consisting of numbers
(as described in Sec. 4.2) and single word utterances. Longer
utterances, along with open grammar and spontaneous speech
will be explored in the subsequent subsection.

5.1.1 Type of microphone
Upon observation of the results it became clear that the

robot-mounted microphone was vastly outperforming the por-
table and studio microphones. When visually comparing the
waveforms, there was a noticeable difference in recorded am-
plitude between the NAO signal and the other two micropho-
nes. This was despite the standalone microphone input gains
being adjusted to maximise the signal (whilst preventing peak
clipping). To increase the signal amplitude whilst maintai-
ning the signal-to-noise ratio, the files were normalised. This
normalisation step made a significant difference to the results
of the speech recognition. For the portable microphone, the
recognition percentage after normalisation (70%, 95% CI
[59%,79%]) was significantly improved compared to before
normalisation (2%, 95% CI [0%,9%]); Wilcoxon signed-rank
test1 Z = −7.483, p < .001, r = 0.67. A similar improvement
was observed for the studio microphone when comparing
before (5%, 95% CI [2%,12%]) and after (81%, 95% CI
[70%,88%]) normalisation; Z = −7.937, p < .001, r = 0.71
(Fig. 3). This suggests that the NAO microphones are tuned
to maximise the speech level, and if external microphones

1Due to the recognition being binary on single word inputs,
the resulting distributions are non-normal, so non-parametric
tests are used for significance testing.
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Figure 3: A comparison of recognition percentage of
English words and short sentences spoken by child-
ren, split by microphone before and after normalisa-
tion. *** indicates significance at the p<.001 level.
The recognition is much improved for the portable
and studio microphones following normalisation.
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Figure 4: Recognition percentage of numbers spo-
ken by children, split by microphone type (62 ut-
terances). *** indicates significance at the p<.001
level, ** indicates significance at the p<.01 level.
The studio microphone provides the best ASR per-
formance, but the difference between on- and lower
quality off-board microphones is relatively small.

are to be used, then normalisation of the recordings should
be considered a vital step in processing prior to sending to
an ASR engine. Therefore, for the remainder of the analy-
sis here, only normalised files are used for the studio and
portable microphones.

In exploring Q1, it is observed that the differences bet-
ween microphones is smaller than may have been expected.
The NAO microphones are mounted in the head of the ro-
bot near a cooling fan which produces a large amount of
background noise. It could therefore be hypothesised that
the ASR performance would greatly increase by using an
off-board microphone, and that using a higher-quality mi-
crophone would improve this further. Using Friedman’s test,
a significant difference at the p < .05 level is found bet-
ween the NAO (61%, 95% CI [48%,73%]), portable (65%,
95% CI [51%,76%]), and studio (84%, 95% CI [72%,92%])
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Figure 5: Recognition percentage of single word ut-
terances spoken by children, split by background
noise level (83 total utterances). Noise level does
not have a significant effect on the recognition rate.

microphones; χ2(2) = 9.829, p = .007. Post-hoc Wilcoxon
signed-rank pairwise comparisons with Bonferroni correction
reveal a statistically significant difference between the porta-
ble and studio microphones (Z = −3.207, p < .001, r = 0.29;
Fig. 4), and between the NAO and studio microphones
(Z = −2.746, p = .006, r = 0.24). Differences between the por-
table and NAO microphones (Z = −0.365, p = .715, r = 0.03)
were not significant. This suggests that there is no intrinsic
value to using an off-board microphone, but that a high
quality off-board microphone can improve the ASR results.
The difference between the robot microphone and the ex-
ternal studio grade microphone is fairly substantial, with
a recognition percentage improvement of around 20%point
(r = 0.28). It would be scenario specific as to whether the
additional technical complexity of using a high-quality ex-
ternal microphone would be worth this gain, and indeed, in
scenarios where the robot is mobile, use of a studio grade
microphone may not be a practicable option.

5.1.2 Clean vs. Noisy Recording Environment
Splitting the files by whether they were judged to be clean

or noisy (as described in Sec. 4.3), it was observed that
the noise did not appear to have a significant impact on the
results of the ASR. Using the studio microphone (i.e., the best
performing microphone) for the number utterances, a Mann-
Whitney U test reveals no significant difference between
clean (81%, 95% CI [60%,93%]) and noisy (81%, 95% CI
[68%,90%]) speech; U = 740.5, p = .994, r = 0.00 (Fig. 5).
The apparent robustness of the ASR engine to noise is of
particular benefit to HRI researchers given the increasingly
‘real-world’ application of robots, where background noise is
often near impossible (nor desirable) to prevent.

However, this does not mean that noise does not play a
role in recognition rates. In this instance, the ASR engine is
restricted in its grammar; the effect of noise in open grammar
situations is explored in the next subsection. Additionally,
when the distance of the sound source to the microphone is
varied, background noise becomes a greater factor.

5.1.3 Sound Source Location
Measurements were made as in Fig. 2 using the built in

NAO microphone, with the replayed audio from the studio
microphone (as described in Sec. 4.3). Due to the number
of data points this generates (540 per child), the findings in
full will not be produced here, but to get a high-level picture
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Figure 6: Interpolated heatmap of recognition per-
centage as a function of distance and orientation to
the robot. Interpolation has been performed based
on the measurements made at the small white cir-
cles. On the left is the heatmap for the noisy audio,
whereas the right is for clean audio. The clean audio
is better recognised at further distances from the ro-
bot, however, in both cases, recognition accuracy is
0% to the side and behind the robot.

of how the distance and orientation influences recognition
rates, a heatmap can be seen in Fig. 6.

Two observations can be made from this data that have
particular relevance for HRI researchers. The first is the
platform-specific observation that with the NAO robot (cur-
rently one of the most widely used research platforms for
social HRI) the utterance recognition rate drops dramati-
cally once the sound source reaches a 45 degree angle to the
robot head, and becomes 0 once it reaches 90 degrees. The
implication of this is that when using the NAO, it is vital to
rotate the head to look at the sound source in order to have
the possibility of recognising the speech. This is of course
dependent on the current default software implementation;
four channels of audio exist, but for ASR only the front two
are used, and so a workaround could be created for this. The
second, broader observation, is that the background noise
and distance seem to influence recognition rates when combi-
ned. Fig. 5 shows how little impact noise has when the files

Distance (cm) Clean % [95% CI] Noisy % [95% CI]

25 73 [52,88] 77 [64,87]
50 65 [44,82] 44 [31,58]
75 27 [12,48] 23 [13,36]
100 4 [0,22] 18 [9,30]

Table 1: ASR recognition rates for children counting
from one to ten. Recordings were played frontally at
different distances from the robot. Note how recog-
nition falls sharply with distance when the speech
contains noise.



are fed directly into the robot ASR, but when combined with
distance, there is a marked difference beyond 50cm. Table 1
shows the measurements for the first metre directly in front
of the robot; at 25cm the difference between clean and noisy
files are minimal, however at 50cm, the difference is more
pronounced, with recognition rates dropping fast.

5.2 ASR Performance with Children
The previous subsection addressed variables in achieving

a maximal possible speech recognition percentage through
modifying the technical implementation, such as different
microphones, distances to a robot, orientation to a robot,
and background noise levels. This subsection will provide
a complementary focus on exploring the current expected
performance of ASR with children under different speech
and ASR engine conditions. This will include a comparison
of differing length utterances, spontaneous utterances, and
different ASR engines with varying grammar specifications.
For all analyses in this section, the studio microphone signal
is used to provide the best quality sound input to the speech
engines (and provide a theoretical maximal performance).

5.2.1 Impact of Providing a Grammar
Tests on child speech in the previous subsection were perfor-

med with single word utterances, with a grammar consisting
of only those utterances. This kind of multiple choice is
relatively straightforward, and this carries over to slightly
longer utterances too. We compare the recognition rate of
the fixed multi-word utterances (34 spatial relation sentences
as described in Sec. 4.2) under 3 conditions using the built-in
NAO ASR: 1) with a fixed grammar containing the complete
utterances, e.g., “one” or “the dog is on the shed” (i.e., multi-
ple choice), 2) with a template grammar for the sentences
(as seen in Fig. 8), and 3) with an open grammar. This
progressively reduces the prior knowledge the ASR engine
has about what utterances to expect. The full mix of noisy
and clean utterances were used as there was no observed
significant correlation in any of the three conditions between
ASR confidence level and noise condition, nor between noise
condition and resulting recognition rates. The grammar con-
dition has a significant impact on the recognition percentage;
Friedman’s test χ2(2) = 39.92, p < .001. Post-hoc Wilcoxon
signed-rank pairwise comparisons with Bonferroni correction
reveal a statistically significant difference between the multi-
ple choice (74%, 95% CI [55%,86%]) and template grammars
(53%, 95% CI [35%,70%]); Z = −2.646, p = .008, r = 0.32.
The template grammar in turn offers a significant impro-
vement over the open grammar (0%, 95% [0%,13%]); Z =
−4.243, p < .001, r = 0.51 (Fig. 7).

5.2.2 Comparison of ASR Engines
Finally, we look at how different ASR engines perform,

under identical recording conditions. We compare the Goo-
gle Speech API (as found in the Chrome web browser for
instance), the Microsoft Speech API (as found in the Bing
search engine), CMU PocketSphinx, and the NAO-embedded
Nuance VoCon 4.7 engine; studies were run in August 2016.
The audio samples are those recorded with the studio microp-
hone; they include native and non-native speakers as well as
noisy and clean samples; they include both the fixed senten-
ces and the spontaneous speech; no grammar is provided to
the engine (i.e., open grammar).

As performing recognition with an open grammar is a
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the dog

fish

horse

is in

next to

in front of

behind

on top of

the pond

shed

car
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horse

Figure 8: Template for the grammar provided to the
ASR for the fixed utterances. 75 different sentences
can be generated from this grammar.

Google API then the wraps looks at the dog [LD=0.17]
Microsoft API rat look at dogs [LD=0.48]
PocketSphinx look i personally [LD=0.83]

Table 2: Recognition results and Levenshtein dis-
tance for three ASR engines on the input utte-
rance “then the rat looked at the dog”. The NAO-
embedded Nuance engine did not return any result.

much harder challenge for recognition engines, the recognition
percentage alone is no longer a sufficient measurement to
compare between performance of ASR engines due to the
very low number of exact utterance recognitions across all
engines. Instead we use the Levenshtein distance (LD) at
the letter level. As the utterance length for the spontaneous
speech is also variable, the Levenshtein distance is normalised
by utterance length (as per Sec. 4.4). This provides a value
between 0 and 1, where 0 means the returned transcription
matches the actual utterance, and 1 means not a single letter
was correct. Values in between indicate the proportion of
letters that would have to be changed to get the correct
response, therefore lower scores are better. Table 2 provides
one recognition example with the corresponding Levenshtein
distances.

While the LD provides a good indication of how close the
result is from the input utterance, the examples in Table 2



evidence that this metric does not necessarily reflect seman-
tic closeness. In this particular case, the Bing result “rat look
at dogs” is semantically closer to the original utterance than
the other answers. For this reason, we assess recognition
performance in open grammar using a combination of three
metrics: 1) the Levenshtein distance; 2) raw accuracy (i.e.,
the number of exact matches between the original utterance
and the ASR result); 3) a manually-assessed ‘relaxed’ accu-
racy. The utterance would be considered accurate in the
‘relaxed’ category if small grammatical errors are present,
but not semantic errors. Grammatical errors can include
pluralisation, removal of repetitions, or small article changes
(‘the’ instead of ‘a’). For example, if an input utterance of
“and then he found the dog” returned the result “and then
he found a dog”, this would be considered accurate, however
“and then he found the frog” would produce a similar LD, but
the semantics have changed, so this would not be included
in the relaxed accuracy category.

Table 3 shows that when the input utterance set is changed
to use spontaneous speech, the average normalised LD does
not change much for any of the ASR engines. Nor do the
LD rates change much when only clean spontaneous speech
is used, providing further evidence for the minimal impact
of noise as established in Sec. 5.1.2. However, there is a
marked difference between Google and the other recognition
engines. The average LD from Google is around half that of
the other engines, and the number of recognised sentences in
both the strict and relaxed categories is substantially higher.
The recognition performance remains however generally low:
using relaxed rules, the currently best performing ASR engine
(Google Speech API) for our data recognises only about 18%
of a corpus of 222 child utterances (utterances have a mean
length of M = 7.8 words, SD = 2.6).

To help decide whether or not the results returned from
Google would actually be usable in autonomous HRI sce-
narios, it is necessary to determine when the utterance is
correctly recognised. This is typically indicated through
the confidence value returned by the recognition engine. To
further explore this, we assess the number recognition per-
centage at different thresholds within the confidence level
(Fig. 9). A total of 101 results from the 222 passed to the
recogniser returned a confidence level (a confidence value
is not returned when the uncertainty of the ASR engine is
too high). To achieve just below 50% semantically correct
recognition accuracy, the confidence threshold could be set
to 0.8, which would only include 36 utterances. While a
clear improvement over the 18% previously achieved when
not taking into consideration the confidence value, a 50%
recognition rate is arguably not sufficient for a smooth child-
robot verbal interaction, and would still require the system
to reject nearly 2/3 of the child utterances.

6. DISCUSSION
Our results show that, at the time of writing, automatic

speech recognition still does not work reliably with children,
and should not be relied upon for autonomous child-robot
interaction.

Speech segmentation is one aspect that we did not in-
vestigate. The segmentation of speech units and rejecting
non-speech parts is an important factor in speech recognition.
For example, noise can be mistakenly recognised by ASR
engines as speech, or a pause in the middle of a sentence
might interrupt the segmentation. Existing solutions (like a
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Figure 9: Histogram of recognition percentage
(using the relaxed, manually coded criteria) for spon-
taneous speech grouped by confidence levels (indica-
ted by the number above each bar) returned by Goo-
gle ASR. The average Levenshtein Distance is also
shown on the secondary axis. Recognition increases
with higher confidence ranges, but few utterances
have a high confidence.

beep sound indicating when to talk) are not ideal for children
of this age. Our manual segmentation likely leads to better
results than would be expected with automatic segmentation.

We did not analyse if gender had an effect on ASR due to
the age of the children used in the study. It has been shown
that there are no significant differences in the vocal tract
between genders at the age under consideration (5-6 years
old) [7], so we do not expect differing performance based on
gender.

Mitigation strategies for poor ASR performance depend
on the ASR engine. We have specifically investigated the use
of constrained grammar with the NAO’s Nuance engine; and
the use of the recognition confidence with the Google ASR.
While severely constraining the interaction scope, none of
these techniques were found to provide satisfactory results.
In our most favourable test case (children speaking numbers
from one to ten in front of the robot, at about 25cm; the
robot having an explicit ‘multiple choice’ grammar), the ASR
would return an incorrect result in one of four cases, and
could not provide any meaningful confidence value. This
result is disappointing, particularly when considering that
interactions based on ‘multiple choice’ are difficult to rely on
with children, as they tend not to remember and/or comply
to the given set of recognisable utterances.

Template-based grammars (or ‘slot-filling’ grammars) where
the general structure of the sentence is known beforehand,
and only a limited set of options are available to fill the
‘gaps’ are a potentially interesting middle-ground between
‘multiple choice’ grammars and open speech. However, we
show that in our test case (grammar depicted in Fig. 8), the
correct utterance was recognised in only 50% of the cases,
again without any useful confidence value.

In the realm of open grammars, the Google Speech API
returned the most accurate results by a large margin. When
run on grammatically correct, regular sentences (the ones ge-
nerated from the grammar depicted in Fig. 8), it reaches 38%
accuracy in recognition when minor grammatical differences
are allowed. This result, while likely not yet usable in today’s
applications, is promising. However, when looking at child-



Google Bing Sphinx Nuance
M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec.

fixed
(n=34)

0.34 [0.24,0.44]
11.8
[38]

0.64 [0.56,0.71]
0

[0]
0.68 [0.64,0.73]

0
[0]

0.76 [0.73,0.80]
0

[0]

spontaneous
(n=222)

0.39 [0.36,0.43]
6.8

[17.6]
0.64 [0.61,0.67]

0.5
[2.4]

0.80 [0.77,0.84]
0

[0]
0.80 [0.78,0.82]

0
[0]

spontaneous
clean only

(n=83)
0.40 [0.35,0.45]

6.0
[16.9]

0.63 [0.58,0.68]
1.2

[1.2]
0.78 [0.72,0.85]

0
[0]

0.78 [0.75,0.81]
0

[0]

Table 3: Comparison between four ASR engines using fixed, all spontaneous, and clean spontaneous speech
utterances as input. Mean average normalised Levenshtein Distance (M LD) indicates how good the transcrip-
tion is. % rec indicates the percentage of results that are an exact match for the original utterance, with the
values in square brackets [ ] indicating matches with ‘relaxed’ accuracy.

ren’s spontaneous speech, the recognition rate drops sharply
(to around 18% of successful recognition). This difference can
be explained by the numerous disfluencies and grammatical
errors found in natural child speech. To provide an example,
a relatively typical utterance from our data was “and... and
the frog didn’t went to sleep”. The utterance has a repetition
and disfluency at the start, and is followed by grammatically
incorrect content. This is, in our opinion, the real challenge
that automatic child speech recognition faces: the need to
account for the child-specific language issues, beyond the
mere differences between the acoustic models of adults vs.
children. This is a challenge not only for speech-to-text, but
as well for later stages of the verbal interaction, like speech
understanding and dialogue management.

Our results allow us to make a number of recommendations
for designing child-robot interaction scenarios that include
verbal interaction. Most of these are also applicable to adult
settings and would be expected to contribute to a smoother
interaction.

• Constrain the interaction by leading the child to a
limited set of responses. This typically works well
for older children, but carries the risk of making the
interaction stale.

• Use additional input/output devices. A touchscreen
has been found to be a particularly effective substitute
for linguistic input [1, 14], but also other devices –such
as haptic devices– should be considered.

• Place the young user in the optimal location for ASR.
The location and orientation relative to the microphone
(and robot) has a profound impact on ASR performance
(Sec. 5.1.3). A cushion, stool or chair can help children
sit in the optimal location.

• Constrain the grammar of the ASR. While not all
ASR engines allow for this (cf. Bing), some will allow
constraints or“hints”on what is recognised. This proves
to be valuable in constrained interaction settings, for
example, when listening only for numbers between 1
and 10 (Sec. 5.2.1).

• Background noise appears to be less of an issue than
initially anticipated. It appears that the current ASR
engines have effective noise cancelling mechanisms in
place. Nevertheless, “the less noise, the better” remains
true, particularly when interacting at a distance from
the robot (Sec’s 5.1.2 & 5.1.3).

• A lack of ASR performance does not mean that the
robot should not produce speech, as speech has been
found to be particularly effective to engage children.

We opted to evaluate the ASR capabilities of the Aldebaran
NAO platform, as it is the most commonly used robot in
commercial and academic HRI. While the NAO system under
performs for child speech, some performance could be gained
through using a high-quality external microphone and cloud-
based ASR, with Google as clear favourite.

7. CONCLUSION
Language is perhaps the most important modality in

human-to-human interaction and as such, functional natural
language interaction forms a formidable prize in human-
machine interaction. Speech recognition is the entry point
to this and while there has been steady progress in speaker-
independent adult speech recognition, the same progress is
currently lacking from children’s speech recognition. For vari-
ous reasons –pitch characteristics of children’s voices, speech
disfluencies, and unsteady developmental changes– child
speech recognition is expected to require a multi-pronged
approach and recognition performance in unconstrained dom-
ains is currently too low to be practical.

This has a profound impact on the interaction between
children and technology, especially where pre-literacy child-
ren are concerned, typically ages 6 and younger. As they
have no means of entering input other than by speaking to
the device, the interaction with pre-literacy children stands
or falls with good speech recognition.

Our results show that natural language interactions with
children are not yet practicable. Today, building rich and
natural interactions between robots and children still requires
a complex alchemy: a careful design of the interaction that
leads the responses of the young user in such a way that
restrictive ASR grammars are acceptable, the understanding
and production of rich non-verbal communication cues like
gaze, and a judicious use of supporting technology such as
touchscreens.
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